by Vivian Miller
Last Updated October 14, 2018 16:19 PM

In time series context, let $\gamma_j=E[(y_t-\mu)(y_{t-j}-\mu)]$ denote population autocovariance, where $\mu$ is population mean of $y_t$, assuming covariance-stationary. Then, $\gamma_j$ goes to $0$ as $j$ goes to $\infty$.

I have been trying to use algebra to prove $\gamma_j$ goes to $0$ for a while, but cannot figure it out. Could anyone give me a hint on how to understand this limiting behavior?

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger